Impact of Diet and Nutrition on Oral Health

Zohoori FV, Duckworth RM (eds): The Impact of Nutrition and Diet on Oral Health. Monogr Oral Sci. Basel, Karger, 2020, vol 28, pp 99–107 (DOI: 10.1159/000455377)

Chapter 10: Probiotic Bacteria and Dental Caries

Pamela Hasslöf • Christina Stecksén-Blicks

Department of Odontology, Paediatric Dentistry, Umeå University, Umeå, Sweden

Abstract

The World Health Organization has defined probiotics as "Live microorganisms which, when administered in adequate amounts, confer a health benefit to the host." Traditionally, probiotic microorganisms (mainly Lactobacillus ssp. and Bifidobacterium ssp.) have been used to prevent or treat diseases in the gastrointestinal tract. In the past 20 years, there has been an increased interest in possible oral health effects of probiotics. In vitro studies have shown promising results with growth inhibition of mutans streptococci (MS) and Candida albicans. There are only a few clinical studies with caries development as the primary outcome while more studies have been focusing on control of caries risk factors or so-called surrogate outcomes. Several studies have evaluated the effects of probiotic bacteria on MS in saliva and/or plaque, and a number of probiotic strains show ability to reduce the number of MS. Probiotic bacteria have not been shown to permanently colonize the oral cavity; in earlyin-life interventions or in subjects with a mature microbiota. To date investigated strains are transiently present in saliva during and shortly after an intervention. There are eight randomized controlled clinical trials with dental caries as outcome and probiotic strains, administration, duration of the intervention, and target group varied. In a majority of the studies (75%), the interventions resulted

in caries reduction in the treatment groups. Although a majority of these studies suggest a caries-preventive effect of probiotic bacteria, more long-term clinical studies are needed in this field before probiotics could be recommended for preventing or treating dental caries.

© 2020 S. Karger AG, Basel

Introduction

Because of an increasing resistance to antibiotics, research on complementary ways of manipulating the microflora has arisen. Proposed alternatives to antibiotic treatment include the use of plant-derived compounds, antimicrobial peptides from various sources and probiotics [1]. Our understanding with regard to the effect of microbes on human health has evolved from knowledge of pathogens inducing infections to a mutually beneficial interaction with indigenous microorganisms that contribute to normal human physiology [2]. High diversity in the microbiome in the intestinal tract is associated with health, whereas reduced diversity is associated with diarrhoea, Crohn's disease and ulcerative colitis, allergy/atopy, and obesity [3, 4]. The importance of the composition of intestinal microbiota in the development of the immune system and the links between intestinal microbiota and diseases such as allergies, atopic eczema and obesity are of great interest [5, 6]. The understanding of the importance of the resident microflora in protecting the body from pathogens has led to an increased interest in probiotic therapy. The term "probiotic" was introduced by Lilli and Stillwell in 1965, as opposed to antibiotic [7]. Today, the World Health Organization define probiotics as "Live microorganisms which, when administered in adequate amounts, confer a health benefit to the host" [8].

Lactic acid bacteria are found naturally in human and cow's milk [9, 10]. These bacteria have been used for hundreds of years to ferment cow's milk into yoghurt and thereby extend the durability of the milk. Fermentation of milk into yoghurt improves its digestibility [3]. The Nobel Prize laureate Elie Metchnikoff earlier ascribed the beneficial effects of fermented dairy products to changes in the microbial balance in the gut; he believed that harmful effects of toxins produced by intestinal bacteria could be replaced by beneficial effects of lactic acid bacteria [11].

Many beneficial effects on health have been attributed to probiotics. Traditionally, probiotic microorganisms have been used for the prevention and treatment of gastrointestinal infections or diseases [12, 13]. The strongest evidence available on the beneficial effects of probiotic lactobacilli and bifidobacteria is related to the prevention or treatment of infections in the lower part of the gastrointestinal tract [14-16]. In addition, probiotics are better than placebo for preventing acute infections of the upper respiratory tract and reducing the use of antibiotics in both children and adults [17]. The use of probiotics to combat biofilm-mediated oral diseases, dental caries and gingivitis/periodontitis has been studied during the last 20 years. The oral cavity is densely colonized with bacteria and the composition of the microbiome may be altered by oral environmental changes, and dysbios can increase the risk for oral diseases [18]. An example of a dysbiotic effect in oral disease is the overgrowth of cariogenic microorganisms in dental caries. The current understanding is that this process is driven by a shift in the biofilm homeostasis towards less diversity [19, 20]. The switch from homeostasis to dysbiosis is driven by acid production from sugars which create environmental conditions that favour acid-tolerant bacterial species such as mutans streptococci (MS) [18]. The impact of dietary free sugars on caries risk has been reviewed and sugar intake has been graded as the most important risk factor for dental caries [21; see also this monograph – chapter 7].

Proposed Mechanism of Action for Probiotic Bacteria

The approach with probiotic therapy in the oral cavity relies on the hypothesis that harmless bacteria could occupy a space in a biofilm that otherwise would be colonized by a pathogen [22]. It is important to stress that the effect is strain specific. The effects of one probiotic strain should not be generalized because different strains exert different effects [23, 24]. Since the microbiome for each individual is unique, the probiotic effect in individuals is difficult to predict. Probiotic bacteria interact with the commensal microbiota in different ways; however, the mechanisms of action are still poorly understood and most studies on them are in vitro and on animals [25]. It is hypothesized that both systemic and local mechanisms occur. The mechanisms include: (1) interference with other microorganisms; the ability to exclude or inhibit pathogens, (2) modulation of host immune responses resulting in both local and systemic effects, and (3) influencing the function of the intestinal epithelial barrier [26]. The local effect is the effect that probiotic bacteria have when they interact with other bacteria in the biofilm and hamper growth by pathogens through pro-

100 Hasslöf⋅ Stecksén-Blicks

duction of hydrogen peroxide, bacteriocins and organic acids. While organic acids lower the pH and promote the growth of acid-tolerating bacteria, the production of bacteriocins may inhibit the growth of other pathogenic species. Systematic effects are thought to be mediated through immunological pathways. Each probiotic strain is associated with a unique profile of cytokines secreted by lymphocytes, enterocytes, or dendritic cells interacting with the particular bacterium [24]. Immunological effects are seen in the mucosa, that is, increased IgA production, stimulated macrophage activity, and increased phagocytosis.

Probiotic Strains and Vehicle

Most studies targeting oral bacteria and oral health, both in vitro and in vivo, have used probiotic strains originally developed for gastrointestinal health. Common probiotic bacteria used in clinical studies targeting oral health are *Lactobacillus* spp. and *Bifidobacterium* spp., in vehicles such as milk, yogurt, cheese, drops, gum, ice cream, lozenges and tablets (Table 1).

Effects of Probiotic Bacteria Shown in In vitro Studies

Probiotic lactobacilli and bifidobacteria are considered both acidogenic and aciduric. Acid production from probiotic bacteria is thought to be critical for their ability to affect other bacteria, but this is also the direct causative factor for the demineralization of teeth [19, 26]. Therefore, one side effect could be that the acidogenicity in the dental plaque increases with the use of probiotics. In vitro studies on monocultures of different probiotic lactobacilli strains have shown a varying acid production [27, 28], while clinical trials have not revealed an impact on plaque acidogenicity [29, 30]. Two simple tests to study bacterial inter-

actions are growth inhibition and co-aggregation. These tests have demonstrated the ability of a number of probiotic strains to inhibit growth and to co-aggregate with oral pathogens, which is a desired feature since it may interfere with biofilm formation. The effects have been shown to be strain- and dose-dependent and depended on the pH in the medium [31–33].

It has been hypothesized that bacteria associated with healthy oral conditions will be more effective than traditional, gut-associated probiotic strains in key aspects such as colonization of the oral site where disease takes place and oral health promoting functions. An example of these active colonizers is Streptococcus dentisani, isolated from dental plaque of caries-free individuals. S. dentisani inhibits the growth of major oral pathogens such as Streptococcus mutans and Streptococcus sobrinus through the production of bacteriocins. It also buffers extracellular acidic pH through an arginolytic pathway [34]. There are in vitro studies demonstrating the inhibition of S. mutans by naturally occurring lactobacilli isolated from the resident microbiota. Isolates of naturally occurring Lactobacilli from breastfed 4-month-old babies showed growth inhibition of S. mutans and Candida albicans [35]. Additionally, naturally occurring lactobacilli isolated from caries-free subjects had a greater inhibitory potential on MS compared to lactobacilli isolated from subjects with caries [36].

Colonization of Probiotic Bacteria

Clinical studies on the possible incorporation and survival of probiotic lactobacilli in the target biofilm, performed in subjects with a mature microbiota, show that probiotic lactobacilli can be recovered in the oral cavity during an intervention; however, they act as transient colonizers [37–41]. One philosophy for the selection of certain strains is whether they are naturally occurring in the

Probiotics and Dental Caries 101

Table 1. Clinical studies with mutans streptococci (MS) as outcome

Reference	Strain	Vehicle	Target group		Outcome
			age*	n	
Nase et al. [49], 2001	Lactobacillus rhamnosus GG	Milk	1–6	594	MS↓
Ahola et al. [50], 2002	Lactobacilli mix	Cheese	18–35	74	MS↓
Nikawa et al. [51], 2004	Lactobacillus reuteri ATCC 55730	Yoghurt	20	40	MS↓
Montalto et al. [52], 2004	Lactobacilli mix	Capsule/drops	23-37	35	MS↔
Caglar et al. [53], 2005	Bifidobacterium animalis DN-173010	Yoghurt	21–24	21	MS↓
Caglar et al. [54], 2006	Lactobacillus reuteri ATCC 55730	Straw/tablet	21–25	120	MS↓
Caglar et al. [55], 2007	Lactobacillus reuteri ATCC 55730	Chewing gum	20-24	80	MS↓
Caglar et al. [56], 2008	Lactobacillus reuteri ATCC 55730, Lactobacillus reuteri PTA 5289	Lozenge	20	20	MS↓
Caglar et al. [57], 2008	Bifidobacterium lactics Bb-12	Ice cream	20	24	MS↓
Cildir et al. [58], 2009	Bifidobacterium animalis DN-173010	Yoghurt	12–16	24	MS↓
Stecksen-Blicks et al. [59], 2009	Lactobacillus rhamnosus LB21	Milk	1–5	174	MS↔
Lexner et al. [60], 2010	Lactobacillus rhamnosus LB21	Milk	13–17	18	MS↔
Singh et al. [61], 2011	Lactobacillus acidophilus La5, Bifidobacterium lactis Bb-12	Ice cream	12–14	40	MS↓
Jindal et al. [62], 2011	Lactobacillus rhamnosus, Bifido-bacterium Iongum, Saccharomyces cereviasae	Powder with freeze dried bacteria	7–14	150	MS↓
Chuang et al. [63], 2011	Lactobacillus paracasei GMNL-33	Tablet	20–26	70	MS↓
Marttinen et al. [29], 2012	Probiotic mix	Tablet	20-30	13	MS↔
Petersson et al. [64], 2011	Lactobacillus rhamnosus LB21	Milk	58-84	160	MS↔
Cildir et al. [65], 2012	Lactobacillus reuteri ATCC PTA 5289, Lactobacillus reuteri DSM 17938	Tablet	4–12	19	MS↔
Taipale et al. [46], 2012	Bifidobacterium animalis BB-12	Tablet	2-24 months	160	MS↔
Juneja et al. [66], 2012	Lactobacillus rhamnosus hct 70	Milk	12–15	40	MS↓
Sudhir et al. [67], 2012	Lactobacillus acidophilus	Curd	10–12	40	MS↓
Mortazavi et al. [68], 2012	Lactobacillus casei	Cheese	18–37	60	MS↓
Keller et al. [30], 2012	Lactobacillus reuteri ATCC PTA 5289, Lactobacillus reuteri DSM 17938	Tablet	26 mean	18	MS↔
Stensson et al. [73], 2014	Lactobacillus reuteri DSM 55730	Drops	1–12 months	113	MS↔
Nishihara et al. [69], 2014	Lactobacillus salivarius WB21, Lactobacillus salivarius TI 2711	Tablet	22–26	64	MS↓
Teanpaisan et al. [70], 2014	Lactobacillus paracasei SD1	Milk	18–25, 40)	MS↓

target site [42]. An example of this is Lactobacillus reuteri ATCC PTA 5289, which is an oral isolate from a Japanese [43]. In a Swedish study, it was tested whether the persistence of L. reuteri DSM 17938 and ATCC PTA 5289 in saliva could delay the regrowth of MS after a full-mouth disinfection with chlorhexidine in 62 healthy adults. L. reuteri ATCC PTA 5289 was frequently detected during the 6 weeks intervention period but in only 3 test group subjects at follow-ups after 3 and 6 months [41]. It has been suggested that exposure early in life may facilitate a permanent incorporation into the oral microbiota [44] and that it could be easier to alter a caries-associated microbiota at the time of colonization compared to later in life when the microbiota has been firmly established [45]. Infants were exposed to Bifidobacterium animalis subsp. lactis BB-12 from 2 to 24 months but no permanent colonization was detected [46]. Hasslof et al. [47] studied whether an intervention with probiotic Lactobacillus paracasei subsp. paracasei strain F19 during weaning resulted in an incorporation into the oral microbiota. When the participants were followed up 8 years after the intervention terminated, the probiotic bacteria were not detected in either saliva or in faeces [47, 48].

Effect of Probiotic Bacteria on Caries Risk Factors

There are only a few studies with caries development as outcome while more studies have been focusing on control of caries-related risk factors or so-called surrogate outcomes. These studies have mainly been short-term and the majority of them, listed in Table 1, have demonstrated the capacity to reduce MS counts in saliva and/or plaque [29, 30, 46, 49–70]. It was concluded in a systematic review that probiotics have demonstrated the ability to reduce MS counts in saliva and/or plaque in the short-term [71]. Short-term administration of *Lactobacillus salivarius* TI 2711 had

an effect not only on MS but also on salivary buffering capacity [69]. Ninety days oral treatment with *S. salivarius* M18 resulted in a 30% reduction in the Cariogram outcome and all parameters except "caries experience", "related diseases" and "clinical judgment" improved [72].

Effect of Probiotic Bacteria on Dental Caries

To date only 8 well-designed randomized controlled trials with dental caries as primary outcome have been published (Table 2). Probiotic strains, administration, duration of intervention, and target group have varied. In a majority of the studies (75%), the interventions resulted in caries reduction in the treatment groups. Three studies investigated the long-term effect of an intervention during infancy. Hasslof et al. [47] showed that feeding probiotic L. paracasei subsp. paracasei strain F19 during weaning (4-13 months of age) had no effect on either counts of MS or on dental caries at follow-up at 9 years of age. In contrast, Stensson et al. [73] showed that an intervention with L. reuteri ATCC 55730 during the first year of life reduced the prevalence of approximal caries lesions in the primary dentition at 9 years of age. Eighty-two percent of the children in the probiotic group and 58% in the placebo group were caries-free. There was no effect on MS counts. Taipale et al. [74] investigated in a low caries population, if an intervention with Bifidobacterium animalis subsp. lactis BB-12 during infancy (2 months to 2 years of age) affected caries at 4 years of age but no effect on dental caries of the intervention could be shown. However, fewer episodes of respiratory infections were observed in the treatment group [75].

In pre-school children attending daycare centres, three studies evaluated the caries-preventive effect of daily consumption of milk with added probiotic bacteria. A Finnish report suggested that *Lactobacillus rhamnosus* GG could reduce the incidence of caries [49] and a Swedish

Probiotics and Dental Caries 103

Table 2. Clinical studies with dental caries as outcome

Reference	Strain	Vehicle	Target group			Outcome
			age	n	months	
Nase et al. [49], 2001	Lactobacillus rhamnosus GG	Milk	1–6 years	594	7	Dental caries ↓
Stecksén-Blicks et al. [59], 2009	Lactobacillus rhamnosus LB21	Milk	1–6 years	248	21	Dental caries ↓
Petersson et al. [64], 2011	Lactobacillus rhamnosus LB21	Milk	58–84 years	160	15	Dental caries ↓
Hasslof et al. [47], 2013	Lactobacillus paracasei F19	Cereals	4 months	179	9	Dental caries ↔
Stensson et al. [73], 2014	Lactobacillus reuteri DSM 55730	Drops	at birth	113	12	Dental caries ↓
Hedayati-Hajikand et al. [78], 2015	Streptococcus uberis KJ, Streptococcus oralis KJ, Streptococcus rattus JH14	Tablet	2–3 years	138	12	Dental caries ↓
Taipale et al. [74], 2013	Bifidobacterium animalis subsp. lactis BB-12	Tablet	2 months	106	15	Dental caries ↔
Rodriguez et al. [77], 2016	Lactobacillus rhamnosus SP1	Milk	2–3 years	205	10	Dental caries ↓

study with L. rhamnosus LB21 suggested similar effects, although a confounding effect from the fluoride, which had been added to the test milk, could not be excluded [59]. Both these studies also displayed reduced frequencies of otitis media (middle ear infection) and less use of antibiotics in the treatment groups [59, 76]. Evidence for an effect of probiotics on otitis media has been systematically reviewed in 12 trials with 3,720 participants including children, adults, and older people [17]. Later, a study from Chile showed that regular intake of milk supplemented with L. rhamnosus SP1 reduced the caries development in children aged 2-3 years [77]. Additionally, in a high caries population in Sweden, administration of a probiotic chewing tablet with Streptococcus uberis KJ2, Streptococcus oralis KJ3 and Streptococcus rattus JH145 was effective in preventing caries in 2- to 3-year-old children [78]. In elderly, the effect on primary root caries lesions of interventions with milk supplemented with 5 ppm fluoride and/or probiotic *L*. rhamnosus LB21 were studied [64]. Results indicated an effect on reversal of the soft and leathery texture of primary root caries lesions. The beneficial effect was strongest when both fluoride and lactobacilli were added to the milk.

Conclusions

It seems possible to alter the levels of MS in the short-term with the daily use of probiotic bacteria. Permanent colonization has not been shown, in early-in-life interventions or in subjects with a mature microbiota. Few randomized controlled trials have been conducted on the long-term effect of probiotic bacteria on caries development. These few studies have targeted different age groups and used different probiotic strains and different vehicles for administration. Further studies are needed to support the present weak evidence for the caries reducing potential of probiotics. In addition, further studies are needed to clarify the mechanisms of action.

104 Hasslöf · Stecksén-Blicks

References

- Cotter PD, Ross RP, Hill C: Bacteriocins

 a viable alternative to antibiotics? Nat
 Rev Microbiol 2013;11:95–105.
- 2 Rautava S, Luoto R, Salminen S, Isolauri E: Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol hepatol 2012;9:565–576.
- 3 Scott KP, Antoine JM, Midtvedt T, van Hemert S: Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis 2015;26: 25877.
- 4 de Vos WM, de Vos EA: Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 2012;70(suppl 1):45–56.
- 5 Holt PG, Sly PD, Bjorksten B: Atopic versus infectious diseases in childhood: a question of balance? Pediatr Allergy Immunol 1997;8:53–58.
- 6 Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022–1023.
- 7 Lilly DM, Stillwell RH: Probiotics: growth-promoting factors produced by microorganisms. Science 1965;147:747– 748
- 8 Sanders ME: Probiotics: definition, sources, selection, and uses. Clin Infect Dis 2008;46(suppl 2):58–61.
- 9 Martin R, Langa S, Reviriego C, Jimínez E, Marín ML, Xaus J, Fernández L, Rodríguez JM: Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003;143:754–758.
- 10 Tulini FL, Hymery N, Haertle T, Le Blay G, De Martinis EC: Screening for antimicrobial and proteolytic activities of lactic acid bacteria isolated from cow, buffalo and goat milk and cheeses marketed in the southeast region of Brazil. J Dairy Res 2016;83:115–124.
- 11 Cavaillon JM, Legout S: Centenary of the death of Elie Metchnikoff: a visionary and an outstanding team leader. Microbes Infect 2016;18:577–594.
- 12 Guandalini S: Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol 2011;45:S149–S153.
- 13 Whelan K, Quigley EM: Probiotics in the management of irritable bowel syndrome and inflammatory bowel disease. Curr Opin Gastroenterol 2013;29:184– 189

- 14 Sullivan A, Nord CE: Probiotics and gastrointestinal diseases. J Intern Med 2005;257:78–92.
- 15 Doron S, Gorbach SL: Probiotics: their role in the treatment and prevention of disease. Expert Rev Anti Infect Ther 2006;4:261–275.
- 16 Rondanelli M, Faliva MA, Perna S, Giacosa A, Peroni G, Castellazzi AM: Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes 2017;8:521–543.
- 17 Hao Q, Dong BR, Wu T: Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev 2015;2:CD006895.
- 18 Marsh PD, Zaura E: Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 2017;44(suppl 18):S12–S22.
- 19 Takahashi N, Nyvad B: The role of bacteria in the caries process: ecological perspectives. J Dent Res 2011;90:294–303.
- 20 Marsh PD: Are dental diseases examples of ecological catastrophes? Microbiology 2003;149:279–294.
- 21 Moynihan P: Sugars and dental caries: evidence for setting a recommended threshold for intake. Adv Nutr 2016;7: 149–156
- 22 Twetman S, Stecksen-Blicks C: Probiotics and oral health effects in children. Int J Paediatr Dent 2008;18:3–10.
- 23 Ezendam J, van Loveren H: Probiotics: immunomodulation and evaluation of safety and efficacy. Nutr Rev 2006;64: 1–14
- 24 Minocha A: Probiotics for preventive health. Nutr Clin Pract 2009;24:227– 241
- 25 Goldin BR, Gorbach SL: Clinical indications for probiotics: an overview. Clin Infect Dis 2008;46(suppl 2):S96–S100; discussion S144–S151.
- 26 Servin AL: Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004;28:405–440.
- 27 Hedberg M, Hasslof P, Sjostrom I, Twetman S, Stecksen-Blicks C: Sugar fermentation in probiotic bacteria–an in vitro study. Oral Microbiol Immunol 2008;23: 482–485.

- 28 Haukioja A, Soderling E, Tenovuo J: Acid production from sugars and sugar alcohols by probiotic lactobacilli and bifidobacteria in vitro. Caries Res 2008; 42:449–453.
- 29 Marttinen A, Haukioja A, Karjalainen S, Nylund L, Satokari R, Öhman C, Holgerson P, Twetman S, Söderling E: Shortterm consumption of probiotic lactobacilli has no effect on acid production of supragingival plaque. Clin Oral Investig 2012;16:797–803.
- 30 Keller MK, Twetman S: Acid production in dental plaque after exposure to probiotic bacteria. BMC Oral Health 2012;12:
- 31 Twetman L, Larsen U, Fiehn NE, Stecksen-Blicks C, Twetman S: Coaggregation between probiotic bacteria and cariesassociated strains: an in vitro study. Acta Odontol Scand 2009;67:284–288.
- 32 Keller MK, Hasslof P, Stecksen-Blicks C, Twetman S: Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: an in vitro study. Acta Odontol Scand 2011;69:263–268.
- 33 Hasslof P, Hedberg M, Twetman S, Stecksen-Blicks C: Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli – an in vitro study. BMC Oral Health 2010;10: 18
- 34 Lopez-Lopez A, Camelo-Castillo A, Ferrer MD, Simon-Soro A, Mira A: Health-associated niche inhabitants as oral probiotics: the case of Streptococcus dentisani. Front Microbiol 2017;8:379.
- 35 Vestman NR, Timby N, Holgerson PL, Kressirer CA, Claesson R, Domellöf M, Öhman C, Tanner AC, Hernell O, Johansson I: Characterization and in vitro properties of oral lactobacilli in breastfed infants. BMC Microbiol 2013;13:193.
- 36 Simark-Mattsson C, Emilson CG, Hakansson EG, Jacobsson C, Roos K, Holm S: Lactobacillus-mediated interference of mutans streptococci in cariesfree vs. caries-active subjects. Eur J Oral Sci 2007;115:308–314.
- 37 Yli-Knuuttila H, Snall J, Kari K, Meurman JH: Colonization of Lactobacillus rhamnosus GG in the oral cavity. Oral Microbiol Immunol 2006;21:129–131.

- 38 Saxelin M, Lassig A, Karjalainen H, Tynkkynen S, Surakka A, Vapaatalo H, Järvenpää S, Korpela R, Mutanen M, Hatakka K: Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int J Food Microbiol 2010;144: 293–300
- 39 Caglar E, Topcuoglu N, Cildir SK, Sandalli N, Kulekci G: Oral colonization by Lactobacillus reuteri ATCC 55730 after exposure to probiotics. Int J Paediatr Dent 2009;19:377–381.
- 40 Ravn I, Dige I, Meyer RL, Nyvad B: Colonization of the oral cavity by probiotic bacteria. Caries Res 2012;46:107– 112.
- 41 Romani Vestman N, Hasslof P, Keller MK, Granström E, Roos S, Twetman S, Stecksén-Blicks C: Lactobacillus reuteri influences regrowth of mutans streptococci after full-mouth disinfection: a double-blind, randomised controlled trial. Caries Res 2013;47:338–345.
- 42 Reid G, Gaudier E, Guarner F, Huffnagle GB, Macklaim JM, Munoz AM, Martini M, Ringel-Kulka T, Sartor B, Unal R, Verbeke K, Walter J: Responders and non-responders to probiotic interventions: how can we improve the odds? Gut Microbes 2010;1:200–204.
- 43 Jones SE, Versalovic J: Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009;9:35.
- 44 Meurman JH: Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 2005;113:188–196.
- 45 Devine DA, Marsh PD: Prospects for the development of probiotics and prebiotics for oral applications. J Oral Microbiol
- 46 Taipale T, Pienihakkinen K, Salminen S, Jokela J, Soderling E: Bifidobacterium animalis subsp. lactis BB-12 administration in early childhood: a randomized clinical trial of effects on oral colonization by mutans streptococci and the probiotic. Caries Res 2012;46:69– 77.
- 47 Hasslof P, West CE, Videhult FK, Brandelius C, Stecksen-Blicks C: Early intervention with probiotic Lactobacillus paracasei F19 has no long-term effect on caries experience. Caries Res 2013;47: 559–565.

- 48 West CE, Hammarstrom ML, Hernell O: Probiotics in primary prevention of allergic disease – follow-up at 8–9 years of age. Allergy 2013;68:1015–1020.
- 49 Nase L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela R, Meurman JH: Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 2001;35:412–420.
- 50 Ahola AJ, Yli-Knuuttila H, Suomalainen T, Poussa T, Ahlström A, Meurman JH, Korpela R: Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol 2002;47:799–804.
- 51 Nikawa H, Makihira S, Fukushima H, Nishimura H, Ozaki Y, Ishida K, Darmawan S, Hamada T, Hara K, Matsumoto A, Takemoto T, Aimi R: Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol 2004; 95:219–223.
- 52 Montalto M, Vastola M, Marigo L, Covino M, Graziosetto R, Curigliano V, Santoro L, Cuoco L, Manna R, Gasbarrini G: Probiotic treatment increases salivary counts of lactobacilli: a double-blind, randomized, controlled study. Digestion 2004;69:53–56.
- 53 Caglar E, Sandalli N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S: Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand 2005;63:317–320.
- 54 Caglar E, Cildir SK, Ergeneli S, Sandalli N, Twetman S: Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand 2006;64: 314–318.
- 55 Caglar E, Kavaloglu SC, Kuscu OO, Sandalli N, Holgerson PL, Twetman S: Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Investig 2007;11:425–429.
- 56 Caglar E, Kuscu OO, Cildir SK, Kuvvetli SS, Sandalli N: A probiotic lozenge administered medical device and its effect on salivary mutans streptococci and lactobacilli. Int J Paediatr Dent 2008;18: 35–39.

- 57 Caglar E, Kuscu OO, Selvi Kuvvetli S, Kavaloglu Cildir S, Sandalli N, Twetman S: Short-term effect of ice-cream containing Bifidobacterium lactis Bb-12 on the number of salivary mutans streptococci and lactobacilli. Acta Odontol Scand 2008;66:154–158.
- 58 Cildir SK, Germec D, Sandalli N, Ozdemir FI, Arun T, Twetman S, Caglar E: Reduction of salivary mutans streptococci in orthodontic patients during daily consumption of yoghurt containing probiotic bacteria. Eur J Orthod 2009;31:407–411.
- 59 Stecksen-Blicks C, Sjostrom I, Twetman S: Effect of long-term consumption of milk supplemented with probiotic lactobacilli and fluoride on dental caries and general health in preschool children: a cluster-randomized study. Caries Res 2009;43:374–381.
- 60 Lexner MO, Blomqvist S, Dahlen G, Twetman S: Microbiological profiles in saliva and supragingival plaque from caries-active adolescents before and after a short-term daily intake of milk supplemented with probiotic bacteria – a pilot study. Oral Health Prev Dent 2010;8:383–388.
- 61 Singh RP, Damle SG, Chawla A: Salivary mutans streptococci and lactobacilli modulations in young children on consumption of probiotic ice-cream containing Bifidobacterium lactis Bb12 and Lactobacillus acidophilus La5. Acta Odontol Scand 2011;69:389–394.
- 62 Jindal G, Pandey RK, Agarwal J, Singh M: A comparative evaluation of probiotics on salivary mutans streptococci counts in Indian children. Eur Arch Paediatr Dent 2011;12:211–215.
- 63 Chuang LC, Huang CS, Ou-Yang LW, Lin SY: Probiotic Lactobacillus paracasei effect on cariogenic bacterial flora. Clin Oral Investig 2011;15:471–476.
- 64 Petersson LG, Magnusson K, Hakestam U, Baigi A, Twetman S: Reversal of primary root caries lesions after daily intake of milk supplemented with fluoride and probiotic lactobacilli in older adults. Acta Odont Scand 2011;69:321–327.
- 65 Cildir SK, Sandalli N, Nazli S, Alp F, Caglar E: A novel delivery system of probiotic drop and its effect on dental caries risk factors in cleft lip/palate children. Cleft Palate Craniofac J 2012;49:369–372.

- 66 Juneja A, Kakade A: Evaluating the effect of probiotic containing milk on salivary mutans streptococci levels. J Clin Pediatr Dent 2012;37:9–14.
- 67 Sudhir R, Praveen P, Anantharaj A, Venkataraghavan K: Assessment of the effect of probiotic curd consumption on salivary pH and Streptococcus mutans counts. Niger Med J 2012;53:135–139.
- 68 Mortazavi S, Akhlaghi N: Salivary Streptococcus mutans and Lactobacilli levels following probiotic cheese consumption in adults: a double blind randomized clinical trial(*). J Res Med Sci 2012;17: 57–66.
- 69 Nishihara T, Suzuki N, Yoneda M, Hirofuji T: Effects of Lactobacillus salivariuscontaining tablets on caries risk factors: a randomized open-label clinical trial. BMC Oral Health 2014;14:110.
- 70 Teanpaisan R, Piwat S: Lactobacillus paracasei SD1, a novel probiotic, reduces mutans streptococci in human volunteers: a randomized placebo-controlled trial. Clin Oral Investig 2014;18:857– 862

- 71 Cagetti MG, Mastroberardino S, Milia E, Cocco F, Lingstrom P, Campus G: The use of probiotic strains in caries prevention: a systematic review. Nutrients 2013;5:2530–2550.
- 72 Di Pierro F, Zanvit A, Nobili P, Risso P, Fornaini C: Cariogram outcome after 90 days of oral treatment with Streptococcus salivarius M18 in children at high risk for dental caries: results of a randomized, controlled study. Clin Cosmet Investig Dent 2015;7:107–113.
- 73 Stensson M, Koch G, Coric S, Abrahamsson TR, Jenmalm MC, Birkhed D, Wendt LK: Oral administration of Lactobacillus reuteri during the first year of life reduces caries prevalence in the primary dentition at 9 years of age. Caries Res 2014;48:111–117.
- 74 Taipale T, Pienihakkinen K, Alanen P, Jokela J, Soderling E: Administration of Bifidobacterium animalis subsp. lactis BB-12 in early childhood: a post-trial effect on caries occurrence at four years of age. Caries Res 2013;47:364–372.

- 75 Taipale TJ, Pienihakkinen K, Isolauri E, Jokela JT, Soderling EM: Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in early childhood. Pediatr Res 2016;79:65–69.
- 76 Hatakka K, Savilahti E, Ponka A, Meurman JH, Poussa T, Näse L, Saxelin M, Korpela R: Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ 2001;322:1327.
- 77 Rodriguez G, Ruiz B, Faleiros S, Vistoso A, Marró ML, Sánchez J, Urzúa I, Cabello R: Probiotic compared with standard milk for high-caries children: a cluster randomized trial. J Dent Res 2016;95: 402–407.
- 78 Hedayati-Hajikand T, Lundberg U, Eldh C, Twetman S: Effect of probiotic chewing tablets on early childhood caries – a randomized controlled trial. BMC Oral Health 2015;15:112.

Dr. Pamela Hasslöf Department of Odontology Paediatric Dentistry, Umeå University, Tandläkarhögskolan SE–901 85 Umeå (Sweden) E-Mail pamela.hasslof@odont.umu.se